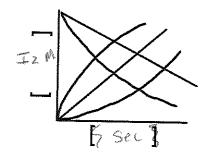
Initial Rate

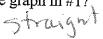

1. If you are going to graph how fast the following reaction is proceeding. I is clear and colorless and I₂ is brown. The concentration of I at the beginning of the reaction is 0.5M

$$I + I \Rightarrow I_2$$

- a. Below you will find a graph, please add in the X and Y units you would like to use and circle the line representing how the I₂ is changing/ Carl Not truck I be cause the
 b. From this graph, how would you physically find the rate?
- b. From this graph, how would you physically find the rate?

 Slope of graph at Point
- c. What changes on a molecular level that might cause a change in the rate?

 Less I to Collide


- d. What is the rate of disappearance of I at the start of the chemical reaction relative to the I_2 ?
- e. What is the order of the reaction relative to I?

f. What is the rate law for this reaction?

- 2. A candle burns with a mass of 75 grams burns for 5 min and has a mass of 72.5 grams.
 - a. What is the rate of burning in grams/second?

- b. Over the course of time a candle (speeds up/slows down/ remains constant) as it burns.
- c. How would the graph look different from the graph in #1?

- d. What is the overall order of the process?
- e. Student hypothesis: The rate constant equals the rate and this will always be the case for all reactions. Justify/nullify.
- 3. In this particular reaction the rate is being measured by a gas pressure meter. The hydrogen is being evolved is 0.45 mol/second. What is the rate of consumption of the PH₃.

$$4PH_{3(s)} \rightarrow P_{4(s)} + 6H_{2(g)}$$